摘要
二维码又称QR编码,已经流程很多年,令人很着迷的是生成的二维码千奇百怪,但是看起来有似乎很有规律,那么它到底是如何生成的,又是如何解析呢?
二维码又称QR编码,已经流程很多年,令人很着迷的是生成的二维码千奇百怪,但是看起来有似乎很有规律,那么它到底是如何生成的,又是如何解析呢?
二维码又称QR Code,QR全称Quick Response,是一个近几年来移动设备上超流行的一种编码方式,它比传统的Bar Code条形码能存更多的信息,也能表示更多的数据类型:比如:字符,数字,日文,中文等等。这两天学习了一下二维码图片生成的相关细节,觉得这个玩意就是一个密码算法,在此写一这篇文章 ,揭露一下。供好学的人一同学习之。
关于QR Code Specification,可参看这个PDF:http://raidenii.net/files/datasheets/misc/qr_code.pdf
首先,我们先说一下二维码一共有40个尺寸。官方叫版本Version。Version 1是21 x 21的矩阵,Version 2是 25 x 25的矩阵,Version 3是29的尺寸,每增加一个version,就会增加4的尺寸,公式是:(V-1)*4 + 21(V是版本号) 最高Version 40,(40-1)*4+21 = 177,所以最高是177 x 177 的正方形。
下面我们看看一个二维码的样例:
Byte mode, 字节编码,可以是0-255的ISO-8859-1字符。有些二维码的扫描器可以自动检测是否是UTF-8的编码。
Kanji mode 这是日文编码,也是双字节编码。同样,也可以用于中文编码。日文和汉字的编码会减去一个值。如:在0X8140 to 0X9FFC中的字符会减去8140,在0XE040到0XEBBF中的字符要减去0XC140,然后把结果前两个16进制位拿出来乘以0XC0,然后再加上后两个16进制位,最后转成13bit的编码。如下图示例:
下面我们看几个示例,
在Version 1的尺寸下,纠错级别为H的情况下,编码: 01234567
1. 把上述数字分成三组: 012 345 67
2. 把他们转成二进制: 012 转成 0000001100; 345 转成 0101011001; 67 转成 1000011。
3. 把这三个二进制串起来: 0000001100 0101011001 1000011
4. 把数字的个数转成二进制 (version 1-H是10 bits ): 8个数字的二进制是 0000001000
5. 把数字编码的标志0001和第4步的编码加到前面: 0001 0000001000 0000001100 0101011001 1000011
在Version 1的尺寸下,纠错级别为H的情况下,编码: AC-42
1. 从字符索引表中找到 AC-42 这五个字条的索引 (10,12,41,4,2)
2. 两两分组: (10,12) (41,4) (2)
3.把每一组转成11bits的二进制:
(10,12) 10*45+12 等于 462 转成 00111001110
(41,4) 41*45+4 等于 1849 转成 11100111001
(2) 等于 2 转成 000010
4. 把这些二进制连接起来:00111001110 11100111001 000010
5. 把字符的个数转成二进制 (Version 1-H为9 bits ): 5个字符,5转成 000000101
6. 在头上加上编码标识 0010 和第5步的个数编码: 0010 000000101 00111001110 11100111001 000010
假如我们有个HELLO WORLD的字符串要编码,根据上面的示例二,我们可以得到下面的编码,
编码 | 字符数 | HELLO WORLD的编码 |
---|---|---|
0010 | 000001011 | 01100001011 01111000110 10001011100 10110111000 10011010100 001101 |
我们还要加上结束符:
编码 | 字符数 | HELLO WORLD的编码 | 结束 |
---|---|---|---|
0010 | 000001011 | 01100001011 01111000110 10001011100 10110111000 10011010100 001101 | 0000 |
如果所有的编码加起来不是8个倍数我们还要在后面加上足够的0,比如上面一共有78个bits,所以,我们还要加上2个0,然后按8个bits分好组:
00100000 01011011 00001011 01111000 11010001 01110010 11011100 01001101 01000011 01000000
最后,如果如果还没有达到我们最大的bits数的限制,我们还要加一些补齐码(Padding Bytes),Padding Bytes就是重复下面的两个bytes:11101100 00010001 (这两个二进制转成十进制是236和17,我也不知道为什么,只知道Spec上是这么写的)关于每一个Version的每一种纠错级别的最大Bits限制,可以参看QR Code Spec的第28页到32页的Table-7一表。
假设我们需要编码的是Version 1的Q纠错级,那么,其最大需要104个bits,而我们上面只有80个bits,所以,还需要补24个bits,也就是需要3个Padding Bytes,我们就添加三个,于是得到下面的编码:
00100000 01011011 00001011 01111000 11010001 01110010 11011100 01001101 01000011 01000000 11101100 00010001 11101100
上面的编码就是数据码了,叫Data Codewords,每一个8bits叫一个codeword,我们还要对这些数据码加上纠错信息。
上面我们说到了一些纠错级别,Error Correction Code Level,二维码中有四种级别的纠错,这就是为什么二维码有残缺还能扫出来,也就是为什么有人在二维码的中心位置加入图标。
错误修正容量 | |
---|---|
L水平 | 7%的字码可被修正 |
M水平 | 15%的字码可被修正 |
Q水平 | 25%的字码可被修正 |
H水平 | 30%的字码可被修正 |
那么,QR是怎么对数据码加上纠错码的?首先,我们需要对数据码进行分组,也就是分成不同的Block,然后对各个Block进行纠错编码,对于如何分组,我们可以查看QR Code Spec的第33页到44页的Table-13到Table-22的定义表。注意最后两列:
Number of Error Code Correction Blocks :需要分多少个块。
Error Correction Code Per Blocks:每一个块中的code个数,所谓的code的个数,也就是有多少个8bits的字节。
下图是根据上述表格中的Version8的一个例子(6,24,42)
Format Information是一个15个bits的信息,每一个bit的位置如下图所示:(注意图中的Dark Module,那是永远出现的)
关于Error Correction Level如下表所示:
Version Information一共是18个bits,其中包括6个bits的版本号以及12个bits的纠错码,下面是一个示例:
然后是填接我们的最终编码,最终编码的填充方式如下:从左下角开始沿着红线填我们的各个bits,1是黑色,0是白色。如果遇到了上面的非数据区,则绕开或跳过。
这样下来,我们的图就填好了,但是,也许那些点并不均衡,如果出现大面积的空白或黑块,会告诉我们扫描识别的困难。所以,我们还要做Masking操作(靠,还嫌不复杂)QR的Spec中说了,QR有8个Mask你可以使用,如下所示:其中,各个mask的公式在各个图下面。所谓mask,说白了,就是和上面生成的图做XOR操作。Mask只会和数据区进行XOR,不会影响功能区。(注:选择一个合适的Mask也是有算法的)
其Mask的标识码如下所示:(其中的i,j分别对应于上图的x,y)
下面是Mask后的一些样子,我们可以看到被某些Mask XOR了的数据变得比较零散了。
Mask过后的二维码就成最终的图了。
好了,大家可以去尝试去写一下QR的编码程序,当然,你可以用网上找个Reed Soloman的纠错算法的库,或是看看别人的源代码是怎么实现这个繁锁的编码。
学会了如何生成二维码,大家也就学会了如何解析二维码了。
参考原文:二维码的生成细节和原理